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ABSTRACT

Recently, there has been a surge of interest in learning representation of graph-
structured data that are dynamically evolving. However, current dynamic graph
learning methods lack a principled way in modeling temporal, multi-relational,
and concurrent interactions between nodes—a limitation that is especially prob-
lematic for the task of temporal knowledge graph reasoning, where the goal is to
predict unseen entity relationships (i.e., events) over time. Here we present Re-
current Event Network (RE-NET)—an architecture for modeling complex event
sequences—which consists of a recurrent event encoder and a neighborhood ag-
gregator. The event encoder employs a RNN to capture (subject, relation)-specific
patterns from historical entity interactions; while the neighborhood aggregator
summarizes concurrent interactions within each time stamp. An output layer is
designed for predicting forthcoming, multi-relational events. Experiments1 on
temporal link prediction over two knowledge graph datasets demonstrate the ef-
fectiveness of our method, especially on multi-step inference over time.

1 INTRODUCTION

Representation learning on graph-structured data that are dynamically evolving has emerged as an
important machine learning task in a wide range of applications, such as social network analysis,
question answering, and event forecasting. This task becomes particularly challenging when dealing
with multi-relational graphs with complex interaction patterns between nodes—e.g., in reasoning
over temporal knowledge graphs (TKGs). However, despite that there has been some recent studies
on representation learning and reasoning over TKGs (Trivedi et al., 2017; Garcı́a-Durán et al., 2018;
Dasgupta et al., 2018; Leblay & Chekol, 2018), these methods either simply embed the associated
time information into low-dimensional space while ignoring the temporal dependencies between
events (Garcı́a-Durán et al., 2018; Dasgupta et al., 2018; Leblay & Chekol, 2018), or lack of a
principled way to consolidate concurrent events within the same time stamps (Trivedi et al., 2017).

In this paper, we propose a general neural architecture, called Recurrent Event Network (RE-NET),
for modeling multi-relational event sequences. To address the above limitations, RE-NET intro-
duces an event sequence encoder and a neighborhood aggregation module. The event sequence
encoder captures temporal and multi-relation dynamics by utilizing the past interactions between
entities (i.e., events). This encoder harness a recurrent neural network to encode the past entity in-
teractions. The neighborhood aggregation module resolves multiple concurrent interactions at the
same time stamp by consolidating neighborhood information via different ways. A classifier layer is
designed to predict unseen entity relationships for the current time stamp, given prior encoder state,
subject entity, and relation. We adopt multi-class cross entropy loss to learn the RE-NET model,
and perform multi-step inference for predicting forthcoming events on the graph over time.

We evaluate our proposed method on temporal graph reasoning (i.e., link prediction) using two pub-
lic temporal knowledge graph datasets, and test the performance of multi-step inference over time.
Experiment results demonstrate the strengths of RE-NET on modeling temporal, multi-relational
graph data with concurrent events, as compared to the state-of-the-art static and temporal graph rea-
soning methods. We further show that RE-NET can perform effective multi-step inference to predict
unseen entity relationships (i.e., forthcoming events) in a distant future.

1Code and data are released at https://github.com/INK-USC/RENet.
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(b) Overview of the RE-NET architecture

Figure 1: Illustration of (a) temporal knowledge graph and (b) the Recurrent Event Network (RE-
NET) architecture. RE-NET employs a RNN to capture (s, r)-specific interactions with object enti-
ties Or

t (s) (modeled by a neighborhood aggregator) at different time t, and adopts the hidden state
of RNN ht and (subject, relation) embeddings (es, er) for predicting forthcoming entity interactions.

2 PROPOSED METHOD

2.1 TEMPORAL KNOWLEDGE GRAPH REASONING

A temporal knowledge graph (TKG) is a multi-relational, directed graph with time-stamped edges
(relationships) between the nodes (entities). An event is defined as a time-stamped edge (subject
entity, relation, object entity, time) in a TKG, and is denoted by the quadruple (s, r, o, t). A TKG is
built upon a set of event quadruples {(si, ri, oi, ti)}i2, where each time-stamped edge has a direction
pointing from the subject entity to the object entity. The task of reasoning over TKGs (or temporal
link prediction) aims to predict unseen relationships with object entities given (s, r, ?, t), or to predict
relationships with subject entities given (?, r, o, t), based on the observed events in the TKG.

2.2 RECURRENT EVENT NETWORK

Predicting unseen entity relationships requires the ability of learning temporal dependency patterns
across historical events. We propose RE-NET to capture the temporal dynamics for predicting
forthcoming events and to summarize the concurrent events within the same time stamps. Our
architecture consists of a Recurrent Neural Network (RNN) as an event sequence encoder and a
neighborhood aggregation module to collect entities each time. Here we only describe our object
prediction model and subject prediction can be obtained by reversing subjects and objects.

Event Sequence Encoder. We first define a conditional probability of an object ot at time t given a
subject s and a relation r, and history of objects interacted with subject s under relation r.

p(ot|s, r, {Or
t−k−1(s), ..., O

r
t−1(s)}) = f(es, er, ht−1(s, r)), (1)

where Or
t−1(s) is a set of objects interacted with s under r at t − 1, es, er ∈ Rd are representation

of subject s and relation r, and ht−1(s, r) is a history vector which includes information from the
past m object set sequence {Or

t−m−1(s), ..., O
r
t−1(s)}. In our implementation, f is a one-layer

fully-connected network with softmax activation function to output class (entity) probability.

We assume that the next set of objects can be predicted with a previous object history under the
same relation. To track the history of interactions, we introduce an event sequence encoder based on
RNN as follows

ht(s, r) = RNN(es, er, g(O
r
t (s)), ht−1(s, r)). (2)

In each time step, besides the history ht−1(s, r), we add the aggregation of neighbour representation
g(Or

t (s)). We also use a subject embedding and a relation embedding as well as aggregation of
objects as the input of RNN to make the RNN subject-relation specific.

Neighborhood Aggregation. A subject entity can make interactions with multiple objects under
relation r at the same time stamp. To encode the entity neighborhood information to a fixed-length
input for our RNN encoder, we define an aggregation module g({eo : o ∈ Or

t (s)}) to collect
information from relation-specific neighbors.

2The same triple (s, r, o) may occur multiple times in different time stamps, yielding different event quadruples.
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Algorithm 1: Training RE-NET

Input: Events E = {(si, ri, oi, ti)}i
Output: A trained classifier f : (s, r; {Or

t−k−1(s), ..., O
r
t−1(s)})→ p(oi,t|s, r)

1 while Parameters in RE-NET does not change do
2 foreach (si, ri, oi, ti) in E do
3 Get history {Or

t−k−1(si), ..., O
r
t−1(si)}

4 set h(si, ri)← 0
5 for i = t− k − 1 to t− 1 do
6 Aggregate neighborhood embeddings xi ← g(Or

i (s))
7 Update history vector h(si, ri)← RNN(esi , eri , xi, h(si, ri))
8 Compute ŷ = f(esi , eri , h(si, ri))
9 ŷ ← softmax(ŷ)

10 Compute cross entropy loss based on equation 3.
11 Update model parameters.

2.3 AGGREGATOR ARCHITECTURES

Here we discuss different choices for the aggregate function g(·), which capture different kinds of
neighborhood information for each subject entity and relation, i.e., (s, r).

Mean Aggregator. The baseline method is to simply take the element-wise mean of the vectors in
{eo : o ∈ Or

t (s)}. But the mean aggregator treats all neighboring objects equally, and thus ignores
the different importance of each neighbour entity.

Attentive Aggregator. We define an attentive aggregator based on the additive attention introduced
in (Bahdanau et al., 2015). The aggregator function is defined as g(Or

t (s)) =
∑

o∈Or
t (s)

αoeo where
αo = softmax(v> tanh(W (es; er; eo))). v ∈ Rd and W ∈ Rd×3d are trainable weight matrices.
By adding attention function of the subject and the relation, the weight can determine how relevant
each object entity is to the subject and relation.

Graph Convolutional Aggregator. Based on the graph convolutional operation in (Kipf & Welling,
2016), we designed an aggregator with GCN message passing mechanism, which takes the form as
g(Or

t (s)) = σ(W · 1
|Or

t (s)|
∑

o∈Or
t (s)

eo), where W ∈ Rd is a trainable weight matrix.

2.4 INFERENCE AND LEARNING OF RE-NET

Multi-step Inference over Time. At inference time, given the subject entity s and relation r, RE-
NET performs multi-step inference to predict forthcoming entities. For example, reasoning for c
time steps from last time stamp t yields entity prediction {Or

t+1(s), O
r
t+2(s), . . . , O

r
t+c(s)}. During

multi-step inference, the encoder state is updated based on current predictions, and will be used for
making next predictions. That is, for each time step we rank the candidate entities and select top-m
entities as current predictions. We maintain the history as a sliding window of length k, so the oldest
interaction set will be detached and new predicted entity set will be added to the history.

Model Learning via Entity Prediction. The (object) entity prediction can be viewed as a multi-
class classification task, where each class corresponds to one object entity. To learn weights and
representations for entities and relations, we adopt a multi-class cross entropy loss to the model’s
output.The loss function for the predicted ot is defined as:

L = −
∑

(s,r,o,t)∈E

M∑
c=1

yc log(p(o = c|s, r)), (3)

whereE is set of events, and yc is a binary indicator (0 or 1) if class label c is the correct classification
for prediction o. p(o = c|s, r) is the probability that o is in class c. We use the softmax function on
equation 1 to get the probability.

Algorithm 1 describes the training for RE-NET.

3



Published as a workshop paper at ICLR 2019

Table 1: Performance comparison on link prediction (average metrics over the entire test set) on the
two public datasets. RE-NET with mean aggregator outperforms all other baseline methods.

Method
ICEWS18 - filtered GDELT - filtered

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
St

at
ic

TransE 17.56 2.48 26.95 43.87 16.05 0.00 26.10 42.29
DisMult 22.16 12.13 26.00 42.18 18.71 11.59 20.05 32.55
ComplEx 30.09 21.88 34.15 45.96 22.77 15.77 24.05 36.33
R-GCN 23.19 16.36 25.34 36.48 23.31 17.24 24.94 34.36
ConvE 37.67 29.91 40.80 51.69 36.99 28.05 40.32 51.44

Te
m

po
ra

l

Know-Evolve* 3.27 3.23 3.23 3.26 2.43 2.33 2.35 2.41
HyTE 7.31 3.10 7.50 14.95 6.37 0.00 6.72 18.63
TTransE 8.36 1.94 8.71 21.93 5.52 0.47 5.01 15.27
TA-TransE 12.85 0.00 19.04 37.53 16.62 0.00 27.65 42.53
TA-DistMult 28.53 20.30 31.57 44.96 29.35 22.11 31.56 41.39
RE-NET (Mean) 42.38 35.80 44.99 54.90 39.15 30.84 43.07 53.48
RE-NET (Attn) 41.46 34.67 44.19 54.44 38.07 29.44 42.26 52.93
RE-NET (GC) 41.35 34.54 44.05 54.35 37.99 30.05 41.40 52.18

Table 2: Performance comparison on ICEWS and GDELT dataset with raw metrics. We observe our
method outperforms all other methods.

Method
ICEWS18 - raw GDELT - raw

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

St
at

ic

TransE 12.37 1.51 15.99 34.65 7.84 0.00 8.92 23.30
DisMult 13.86 5.61 15.22 31.26 8.61 3.91 8.27 17.04
ComplEx 15.45 8.04 17.19 30.73 9.84 5.17 9.58 18.23
R-GCN 15.05 8.13 16.49 29.00 12.17 7.40 12.37 20.63
ConvE 22.81 13.63 25.83 41.43 18.37 11.29 19.36 32.13

Te
m

po
ra

l

Know-Evolve* 0.11 0.00 0.00 0.47 0.11 0.00 0.02 0.10
HyTE 7.41 3.10 7.33 16.01 6.69 0.01 7.57 19.06
TTransE 8.44 1.85 8.95 22.38 5.53 0.46 4.97 15.37
TA-TransE 8.02 0.00 9.53 24.44 8.84 0.00 11.69 25.32
TA-DistMult 15.62 7.63 17.09 32.21 10.34 4.44 10.44 21.63
RE-NET (Mean) 26.07 16.55 29.70 44.77 19.02 11.74 20.20 33.34
RE-NET (Attn) 25.77 16.34 29.42 44.47 18.60 11.39 19.68 32.96
RE-NET (GC) 25.78 16.35 29.35 44.44 18.53 11.41 19.63 32.53

3 EXPERIMENTS

We evaluate the proposed method with other static and temporal baselines on the task of link pre-
diction. Our goal is to predict future entities given the past interactions. Furthermore, we examine
the method in a multi-step prediction setting.

Datasets. We use two datasets, Integrated Crisis Early Warning System (ICEWS18) (Boschee et al.,
2015) and Global Database of Events, Language, and Tone (GDELT) (Leetaru & Schrodt, 2013).
ICEWS is collected from 1/1/2018 to 10/31/2018,and GDELT is from 1/1/2018 to 1/31/2018.

Experimental Setup. We use Gated Recurrent Unit (Cho et al., 2014) as our event sequence en-
coder, where the length of history is set as k = 10. We use a 1-layer fully connected layer for f in
equation 1 At inference time, RE-NET performs multi-step prediction across the time stamps in dev
and test sets. For each dataset, we split it into three subsets, i.e., train(80%)/valid(10%)/test(10%),
by time stamps. We report Mean Reciprocal Ranks (MRR) and Hits@1/3/10, using the filtered
version of the datasets as described in (Bordes et al., 2013).

Baseline Methods. We compare our approach to baselines for static graphs and temporal graphs:
(1) Static Methods. By ignoring the edge time stamps, we construct a static, cumulative graph
for all the training events, and apply multi-relational graph representation learning methods includ-
ing TransE (Bordes et al., 2013), DisMult (Yang et al., 2015), ComplEx (Trouillon et al., 2016),
R-GCN (Schlichtkrull et al., 2018), and ConvE (Dettmers et al., 2018). (2) Temporal Reason-
ing Methods. We also compare with state-of-the-art temporal reasoning for knowledge graphs,
including Know-Evolve3 (Trivedi et al., 2017), TA-TransE/DistMult (Garcı́a-Durán et al., 2018),

3*: We found a problematic formulation in Know-Evolve when dealing with concurrent events (Eq. (3) in its paper) and a flaw in its
evaluation code. The performance dramatically drops after fixing the code. Details are discussed in Section D of supplementary materials.
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Figure 2: Performance comparison of link prediction over different time stamps (i.e., temporal rea-
soning) on the test sets of ICEWS18 and GDELT datasets with filtered metrics.
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Figure 3: Performance comparison of link prediction over different time stamps (i.e., temporal rea-
soning) on the test sets of ICEWS18 and GDELT datasets with raw metrics.

HyTE (Dasgupta et al., 2018), and TTransE (Leblay & Chekol, 2018). Experiment settings and
implementation details of baseline methods are described in Section C of supplementary materials.

3.1 RESULTS

Overall Performance Comparison. Tables 1 and 2 summarize performance comparison results
on averaged metrics over the entire test sets. RE-NET (Mean), RE-NET (Attn) and RE-NET (GC)
denote our method with mean, attentive, and graph convolutional aggregators, respectively. Overall,
our proposed method, RE-NET, outperforms all other baselines on both datasets. Among all variants
of aggregation functions, the mean aggregator shows the best performances while the attentive and
graph convolutional aggregator little lower performances. In particular, the temporal baselines do not
always show the better performances than static methods. This is because their methods try to model
the temporal information regardless of the past interactions. For example, TA-TransE designed
time-aware representations for relation embeddings which only see the current time stamp, and thus
it cannot generalize to unseen time stamps. However, our proposed method capture the temporal
dependencies between entities and can predict future entities even in the unseen time stamps.

Performance over Time. Figs. 2 and 3 show the performance comparisons over different time
stamps for the two datasets with filtered metrics and raw metrics, respectively. RE-NET outperforms
other baselines with the MRR metric on both datasets. However, RE-NET and ConvE compete each
other with the Hits@3 metric. We notice that RE-NET is getting lower and the difference between
RE-NET and ConvE is getting smaller as shown in Fig. 3b. This is because RE-NET predicts entities
based on the history, but the history is updated with predicted entities at inference, which is why RE-
NET’s performance is getting lower. We also note that performance gaps on the GDELT dataset is
smaller than on the ICEWS18 dataset. GDELT has finer granularity of time than ICEWS18, and
thus it requires longer history for prediction.

4 CONCLUSION AND FUTURE WORK

In this work, we study the task of temporal reasoning over dynamic knowledge graphs, and propose
Recurrent Event Network (RE-NET) to model temporal, multi-relational, and concurrent interac-
tions between entities. We show the effectiveness of RE-NET on predicting unseen relationships
over time on two TKG datasets. Interesting future work includes aggregating multi-hop neighbor-
hood information for event modeling, and in-depth study of different aggregator functions.
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